А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
0-9 A B C D I F G H IJ K L M N O P Q R S TU V WX Y Z #


Чтение книги "Вселенная внутри нас: что общего у камней, планет и людей" (страница 14)

   Революция

   Город Стаффорд расположен в центре Канзаса, чуть ближе к южной границе. Его население не превышает тысячи семей, а школа настолько мала, что футбольные команды составляют всего из восьми игроков. В начале XX века члены семьи Ньюэллов были известны в городе как эксперты в области естественной истории. Когда фермеры нашли странный камень, старший Ньюэлл опознал в нем зуб мамонта. Шестилетний Норман Ньюэлл разглядывал находки, и это заставляло его по-другому смотреть на родные места: равнины Канзаса когда-то были лугами и лесами, в которых обитали крупные млекопитающие. Его интерес к палеонтологии рос, и он преуспел в учебе до такой степени, что получил привилегированную стипендию по палеонтологии в Йельском университете, который к 30-м годам стал одним из ведущих центров исследований в этой области.
   Пребывание Нормана Ньюэлла в Йельском университете было семейным предприятием. Финансовую помощь ему оказывала жена, которая составляла каталоги образцов для Музея естественной истории им. Джорджа Пибоди, пока Ньюэлл не получил стипендию на второй год обучения. Он занялся изучением двустворчатых моллюсков. Ньюэлл быстро понял преимущества работы с этими животными. У них прочные раковины, которые легко окаменевают, и они очень часто встречаются в древних пластах горных пород по всему миру. Ньюэлл сделал нечто, что мало кому в то время приходило в голову: использовал современных моллюсков для реконструкции образа жизни их вымерших родичей.
   Во время Второй мировой войны Ньюэлл служил в отделении Государственного департамента США в Перу, а в 1945 году устроился на работу в Американский музей естественной истории в Нью-Йорке. Это было большой удачей: там он получил возможность работать с великолепной коллекцией, общаться с известными учеными и рассчитывать на финансовую поддержку для дальнейших исследований. В те времена музей был земным раем для тех, кто занимался окаменелостями и таксономией. Запасники музея представляют собой коридоры длиной в сотни метров. Эти коридоры – центры исследовательской активности. Вокруг окаменелостей и образцов, собранных со всего света, рождались и рождаются научные идеи.
   Вскоре после того, как Ньюэлл прибыл в Нью-Йорк, его попросили сочинить две главы для колоссальной сводки “Основы палеонтологии беспозвоночных”. Книга эта, как и ее заглавие, приводит в трепет. Идея заключалась в том, чтобы создать современный каталог всех когда-либо найденных окаменелостей с указанием деталей их строения и описанием геологических слоев, в которых они были найдены. Теперь это издание разрослось до пятидесятитомного труда, составленного тремя сотнями ученых, каждый из которых является экспертом по определенной группе ископаемых организмов. Кое-кому подобное занятие напоминает филателию, но таким, как Ньюэлл и его последователи оно представляется окном в мир научных открытий.
   Ньюэлл с головой ушел в мир ископаемых раковин. Он изучил их анатомию и разнообразие, а также (что очень важно) узнал, в каких геологических слоях их можно встретить. Как и Филлипс и Смит до него, Ньюэлл “читал” слои земной коры как книгу. Но, в отличие от Филлипса и Смита, он был вооружен широчайшим набором данных из разных регионов Земли.
   Чем больше Ньюэлл и другие ученые исследовали окаменелости, тем отчетливее понимали: огромное множество животных и растений, населявших когда-то планету, очень быстро, практически одновременно, исчезало. Жизнь на планете претерпела не одну, а несколько катастроф.
   Ньюэлл озвучил мнение небольшой группы, призывавшей признать реальность глобальных катаклизмов, о которых Филлипс и Кювье говорили более ста лет назад. Реакция была такой же: его работу проигнорировали. Доказательства изменения хода истории в прошлом не могли поколебать господствовавшую более ста лет теорию. Та же судьба постигла идею континентального дрейфа: рисунок континентов был очевиден, но из-за отсутствия механизма, объяснявшего их движение, многие не могли согласиться с реальностью последнего. То же и с идеей катастроф. Какие механизмы могут объяснить эти глобальные изменения?

   В конце 70-х годов XX века Уолтер Альварес, геолог из Беркли, изучал в Италии породы, возраст которых составляет около шестидесяти пяти миллионов лет. Известно, что именно в это время (меловой период) исчезли динозавры. Альваресу, весьма аккуратному и внимательному полевому геологу, удалось отождествить момент окончания мелового периода с одним тонким прослоем глины. Ниже лежали слои, содержавшие окаменелые остатки динозавров, морских пресмыкающихся и других животных. Выше никого из этих существ уже не было. Альварес задался вопросом: насколько быстро исчезли эти существа? Он считал, что ответ на вопрос содержится в этом слое глины. Может быть, анализ ее химического состава позволит оценить скорость его образования?
   Уолтер Альварес обратился с этим вопросом к своему отцу, Луису Альваресу, лауреату Нобелевской премии по физике, также работавшему в Беркли. Альварес-старший живо интересовался разными научными проблемами и стремился применить свои знания в области физики элементарных частиц. В то время, когда сын обратился к нему с вопросом, он изобретал способ поиска сокровищ в египетских пирамидах.
   Уолтер и Луис Альваресы решили с высокой точностью измерить содержание некоторых химических элементов в геологических слоях. Одним из интересных элементов является иридий: он редко встречается на Земле, но гораздо чаще в некоторых астероидах и метеоритах. Если метеориты бомбардируют Землю с постоянной частотой, содержание иридия в пластах может служить геологическими часами. Содержание иридия в минералах исчисляется в частях на миллиард. К счастью, Альварес-старший был связан с научной группой, знакомой с работой такого рода, и имел доступ к приборам Национальной лаборатории им. Лоуренса в Беркли, способным осуществить очень точные измерения.
   Уолтера и его отца ждал большой сюрприз, потому что иридий, практически отсутствовавший в большинстве слоев, в очень высокой концентрации обнаружился в данном слое глины. Стало понятно, что астероиды не падают на Землю с постоянной частотой. Время от времени происходят падения очень крупных тел. В данном случае речь шла о падении одного гигантского астероида. Всплеск содержания иридия в точности соответствовал геологическому слою, в котором отразилась одна из величайших катастроф в истории.
   Затем Луис Альварес предложил возможный механизм вымираний. В результате падения на Землю крупного астероида в атмосферу выбрасывается такое количество пыли, что она закрывает Солнце и приводит к гибели растительности. Эффект распространяется по пищевым цепям и вызывает повсеместную гибель животных. Стало возможным не только представить себе механизм глобальной катастрофы, но и проследить ее влияние на жизнь путем детального изучения геологических слоев. Увлекательность научного поиска в том и состоит, чтобы придумать идею, справедливость которой определяется верностью сделанных на ее основе предсказаний, а для их проверки вам приходится исследовать новые места, открывать новые объекты и анализировать новые данные.
   Метеоритная теория не просто рассказывает о камнях, падающих из космоса: она заставляет иначе взглянуть на саму идею глобальных катастроф. Впервые с тех пор, как человек задумался о природе гор, живых существ и окаменелостей, мы получили возможность не только представить себе механизм глобального катаклизма, но и реконструировать его воздействие на биосферу. Создание метеоритной теории вернуло в повестку дня вопрос о роли катаклизмов в истории. Теперь идеи таких ученых, как Филлипс, Кювье и Ньюэлл, уже не воспринимаются как чудачество. Мы больше не задаем себе вопрос, возможны ли катастрофы, а пытаемся определить их последствия.

   Лотерея?

   В конце 60-х годов молодой человек по имени Томас Шопф задался целью изменить наше восприятие прошлого, не слишком беспокоясь, что это кому-то может не понравиться. Он видел, что очень многие палеонтологи работают с одной небольшой группой животных, относящихся к строго ограниченному небольшому отрезку времени. Вся палеонтология представляла собой набор разрозненных исследований. Но если мы хотим ответить на глобальные вопросы, подход следовало изменить. Стивен Джей Гулд однажды заметил, что Шопф желал “спасти палеонтологию”, введя в нее математическую точность.
   Понимал это Шопф или нет, но он пытался вернуться к идеям Джона Филлипса. “Что еще мы можем с этим сделать?” – с такими словами Шопф обратился к необычной аудитории. Он пригласил нескольких крупнейших палеонтологов в Вудсхоулский океанографический институт на полуострове КейпКод. Когда они приехали, то обнаружили на столах тома “Основ палеонтологии беспозвоночных”. Им предстояло продолжить дело, начатое Ньюэллом. Самые выдающиеся умы, вооруженные самым полным описанием всех известных окаменелостей, на три дня закрылись в кабинете института на берегу океана. Из этого могло получиться нечто фантастическое. Вообще говоря, вся эта история несколько напоминала роман Агаты Кристи.
   Каков же был результат организованного Шопфом трехдневного столкновения всех собранных к тому времени палеонтологических данных с несколькими лучшими умами? Присутствовавший там коллега Шопфа из Чикаго так описал результат: “Мы не сдвинулись с места. Абсолютный ноль”. К счастью, в последний день Стивен Джей Гулд привел одного из своих студентов. Этого компьютерного гения звали Джек Сепкоски, и он только что окончил университет Нотр-Дам в штате Индиана.
   Не сохранилось свидетельств о том, что говорил или делал юный Сепкоски на собрании. Однако после собрания Гулд поручил ему представить “Основы палеонтологии” и результаты различных палеонтологических исследований в виде базы данных, в которой для каждой группы окаменелостей были бы точно указаны интервалы геологической временной шкалы, к которым эта группа приурочена. Это было в 1972 году. Сепкоски принялся за работу и стал понемногу компилировать данные. Его база данных росла и росла. Он продолжал начатое дело, даже когда сам стал профессором Чикагского университета. Спустя десять лет после встречи в Океанографическом институте первая пригодная для использования палеонтологическая база данных была готова.
   Я был тогда студентом и хорошо помню, что база Сепкоски стала главным предметом обсуждения среди палеонтологов. При учете всей имевшейся информации выяснилось, что развитие жизни на Земле ни в коем случае нельзя считать случайным. Ранний период развития животного мира сопровождался очень быстрым расширением разнообразия с последующим выходом на некое плато. Со временем число видов животных то слегка увеличивалось, то уменьшалось; при этом можно выделить пять временных интервалов, когда количество видов сокращалось катастрофически. Самый известный эпизод – тогда погибли все динозавры – произошел примерно шестьдесят пять миллионов лет назад (так называемое массовое вымирание на рубеже мелового и палеогенового периодов). Вместе с динозаврами исчезли морские и летающие пресмыкающиеся, аммониты, сотни менее известных существ. Другие эпизоды массового вымирания случились 375 и 200 миллионов лет назад. Картина во всех случаях примерно одна и та же: множество видов во всем мире в какой-то момент одновременно исчезают. Один такой эпизод чуть было не закончился полным исчезновением жизни на Земле: двести пятьдесят миллионов лет назад погибло 90 % видов морских существ.
   Итак, катастрофы – не выдумка чудаковатых ученых, а факт, определяющий развитие нашего мира. И, как выяснилось уже после открытия Альваресов, смертельную опасность представляют не только астероиды. Ответственность за некоторые глобальные изменения на планете, в которых неповинны астероиды, можно возложить на извержения вулканов и химические изменения в океанах. Эти знания позволяют нам задаться новыми важными вопросами.
   Кто выживает в глобальных катастрофах? Существуют ли правила, определяющие реакцию живых организмов на катаклизм? К великому сожалению, ни Шопф, ни Сепкоски не дожили до появления первых ответов. Шопф всегда жил в очень напряженном рабочем ритме, он просто не умел отдыхать. Он полностью погружался в решение задачи и работал круглосуточно. Его сердце не выдержало в 1984 году, во время геологической экспедиции, и работа остановилась навсегда. Шопфу было сорок четыре года. Сепкоски умер у себя дома в Чикаго в 1999 году. Ему было пятьдесят.
   После смерти Шопфа на его место в Чикаго взяли другого неугомонного ученого – Дэвида Яблонски. Кабинет Яблонски находится недалеко от моего, а лаборатория Дэйва представляет собой большое открытое помещение. Точнее, это помещение было большим и открытым до того, как туда переехала его коллекция из тысяч книг, статей и журналов. Добраться до стола Дэйва у дальней стены очень непросто. Требуется пробираться через лабиринт, образованный колоннами из журналов высотой по пояс и книг – высотой по грудь. От его стола невозможно разглядеть дверь: ее заслоняют все эти книги и оттиски. Но если вы попросите Дэйва разыскать какую-нибудь статью, он безошибочно выудит ее из стопки. Я с трудом нахожу дорогу в этом лабиринте, а он точно знает, где что. Его ни в коем случае нельзя назвать неорганизованным человеком. Его комната полностью соответствует его способности находить порядок среди хаоса.
   Дэйв анализирует палеонтологические базы, подобно тому, как за сорок лет до него это пытались сделать ученые, собравшиеся в Вудсхоулском институте. Он обращает внимание в первую очередь на животных с твердым минеральным скелетом, поскольку их много и они хорошо сохраняются в виде окаменелостей. Дейва вдохновляет поиск крупномасштабных закономерностей. При этом любой измеряемый параметр может стать предметом анализа: от размеров животного до времени его распространения или ареала.
   Отделить сигнал от шума в таких исследованиях – задача непростая. Представьте, что вам нужно сравнить окаменелости каких-то видов организмов и ответить на вопрос, какой из них в отдаленном прошлом был более многочисленным. Начнем с очевидного. Нужно подсчитать все окаменелости этих видов во всех музеях и коллекциях мира и найти тот вид, который наиболее широко там представлен. Но мы быстро поймем, что некоторые окаменелости встречаются чаще прочих, поскольку они лучше сохраняются (или, может быть, их легче найти). Другие окаменелости могут быть представлены широко потому, что коллекционеры их особо выделяют или отбирают в связи с выполнением какого-то научного проекта. Например, если вы взглянете на нашу коллекцию, собранную в Арктике, то обнаружите, что в ней явно преобладают зубы и задние части челюстей. Означает ли это, что в прошлом зубы и челюсти встречались чаще других частей животных? Конечно, нет. Это означает лишь, что они хорошо сохраняются и найти их проще, чем другие части скелета. Дэвид Яблонски и его коллеги потратили много времени, пытаясь убрать из данных эти искажения и случайный шум, чтобы составить подлинную летопись жизни на нашей планете в разные времена.
   Двустворчатые моллюски, такие как устрицы, мидии и их родственники – не только украшение обеденного стола, но и доминирующий элемент среди всех окаменелостей. Ископаемых двустворчатых моллюсков находят на территории древних озер, рек и океанов. Они заполняют полки и кабинеты во всех палеонтологических коллекциях мира. Обилие этих окаменелостей (двустворчатые моллюски живут на планете более пятисот миллионов лет) делает их идеальным объектом для изучения изменения биоразнообразия во времени.
   Чтобы взглянуть на проблему глазами Дэйва, нужно представить три с половиной миллиарда лет истории жизни на Земле как одну длинную игру на выживание, в которой выигрывали виды, жившие дольше и производившие более многочисленное потомство. А теперь подумайте о том, какие факторы помогают организмам выживать и воспроизводиться. Если речь идет о животных, мы назовем такие признаки, как способность быстро бегать, высоко прыгать и ловко лазать, а также иметь челюсти, приспособленные для употребления определенного рода пищи. В какое-то время хорошо быть большим, а в какое-то – маленьким. Нужно определить, насколько эффективно животное питается, воспроизводится и двигается. На основании этих показателей можно предсказать, кто выйдет победителем: быстрые одолеют медленных, плодовитые – менее плодовитых, и так далее. Десятки или даже сотни миллионов лет эти признаки обеспечивают успешное развитие определенных видов. Затем следует понять, как эти признаки помогают животным пережить глобальную катастрофу. Казалось бы, наличие подобных признаков – надежный ключ к успеху. Так вот: все это абсолютно неверно.

   Так где же он, палеонтологический Грааль – признак, обеспечивающий выживание в катастрофе? Кажется, все же существуют некоторые факторы, способствовавшие выживанию в катаклизмах, вызванных астероидами, изменением уровня моря и извержениями вулканов. Один фактор, по-видимому, позволяет предугадать способность вида к выживанию в глобальной катастрофе: широкое распространение. Виды, представители которых встречаются на многих континентах, сохранятся с большей вероятностью, чем виды, обитающие только в одном регионе.
   Миллионы лет выживание и воспроизводство живых организмов определяется тем, как они питаются, передвигаются, размножаются и так далее. Но вот происходит катастрофа, и все эти признаки теряют свое значение. Важно лишь то, где эти организмы обитают. Редкие события быстро меняют правила игры, и все начинается сначала. Катаклизм переживают не всегда “лучшие” в каком-либо отношении существа. Если “победить” означает “пережить катастрофу”, то побеждает тот, кто расселился повсеместно.
   Принцип “созидательного разрушения” хорош не только в экономике, но и в биосфере. Выжившие в глобальной катастрофе получают в наследство новую Землю, на которой конкуренция слабее. Вспомните детскую игру в “царя горы”: самый сильный и драчливый мальчишка сидит на вершине и никого туда не пускает – просто потому, что он большой и он наверху. Вы никакой силой не можете его оттуда столкнуть. Что может вам помочь выиграть? Только случай. Например, мама позовет его домой обедать, и вершина освободится. Драчун уйдет, и вы просто займете его место со всеми преимуществами нахождения наверху.

   Каждая катастрофа оставляет выживших на обновленной Земле.

   Эта схема справедлива для выживания видов. Если успешно развивающийся вид занимает какую-либо нишу, например, в определенной зоне океана, другим вряд ли удастся завладеть тем же пространством. Но если в результате катаклизма этот “царь горы” исчезает, выжившие могут занять призовое место практически без борьбы.
   Человек – вид, сидящий на вершине горы спустя три с половиной миллиарда лет после появления жизни на Земле. Что это означает для нас?
   Многие наши экспедиции в поисках окаменелостей оказались на удивление неудачными. Не была исключением и работа с Фаришем Дженкинсом в Африке в 90-х годах. Несколько месяцев мы безуспешно пытались найти следы млекопитающих в Намибии в отложениях возрастом двести миллионов лет, и, наконец, для поднятия настроения Фариш решился отвезти нас на север на сафари. Через несколько дней езды на машине мы оказались в Национальном парке Этоша на границе с Анголой. В этой пустынной местности источники воды как магнит притягивают все живое. Каждое утро на рассвете мы вылезали из постелей, ставили машины у источников и часами смотрели, как приходили и уходили бесчисленные животные. Первыми появлялись птицы. Потом зебры и буйволы. Иногда поблизости ожидала своей очереди стая гиен. При появлении льва все пускались врассыпную, а затем, когда казалось, что опасность миновала, все возвращались к нормальному ритму еды и питья.
   В этом мире победителями были крупные млекопитающие и птицы, но мой мозг все еще был занят анализом горных пород возрастом двести миллионов лет. В те времена Землю населяли пресмыкающиеся всех вообразимых и невообразимых видов, млекопитающие тогда были не крупнее землеройки, а птиц и вовсе не существовало. Сегодняшняя жизнь у водопоя является результатом катастроф, случившихся миллионы лет назад. До этих катастроф у источников воды собирались совсем другие существа, весьма преуспевающие. Так, здесь жили крупные и мелкие динозавры, травоядные и хищные. В меловом периоде вместо слонов и крупных травоядных млекопитающих здесь жили цератопсы и гадрозавры. Место львов занимали тираннозавры, другие крупные динозавры, а также крокодилы. Динозавры и их родственники были “царями горы” на протяжении миллионов лет, пока их не уничтожила катастрофа. И только тогда потомки маленького мышеподобного существа с зубами размером с песчинку, которое динозавры раздавили бы, не заметив, выросли и стали новыми “царями горы”.
Чтение онлайн



1 2 3 4 5 6 7 8 9 10 11 12 13 [14] 15 16 17 18 19 20 21 22 23 24 25 26

Навигация по сайту
Реклама


Читательские рекомендации

Информация