А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
0-9 A B C D I F G H IJ K L M N O P Q R S TU V WX Y Z #


Чтение книги "Террористическое и нетрадиционное оружие" (страница 11)

   3.2.2. Электромагнитные боеприпасы (ЭМБП)

   В 1994 году доктор А.Б. Прищепенко представил доклад на конференции в Бордо. Им были описаны устройства, в которых осуществлялось прямое преобразование химической энергии, содержащейся во взрывчатом веществе (ВВ), в энергию РЧЭМИ. Такие источники (собственно, и положившие начало классу СШИ) теперь называют «устройствами Прищепенко» (рис. 3.8, 3.9, 3.10). Доклад привел к изменению классификации РЧО, в зависимости от применяемых источников РЧЭМИ (рис. 3.11): прямого преобразования, в которых импульс тока поступает непосредственно на антенну, или таких, в которых УПИ генерируется при ускоренном движении электронов в электровакуумных приборах.



   Рис. 3.8
   105-мм реактивная граната со сферическим ударно-волновым источником РЧЭМИ: 1 – рабочее тело – монокристалл; 2 – детонационная разводка; 3 – магнитопроводы; 4 – постоянные магниты



   Рис. 3.9
   125-мм реактивная граната, снаряженная кассетными элементами на основе виткового генератора частоты: 1 – электроды, образующие неполный виток; 2 – металлическая труба, заполненная взрывчатым веществом и установленная с эксцентриситетом относительно электродов; 3 – пьезоэлемент (источник первичного энергообеспечения); 4 – малоемкостной конденсатор


   Рис. 3.10
   Схема взрывомагнитного генератор частоты (ВМГЧ) и фотография 122-мм боевой части неуправляемой ракеты на его основе. Медная труба 1 заполнена ВВ 2, и расположена соосно спирали 3. Между трубой и спиралью включен заряженный высоковольтный малоемкостной конденсатор 4. Расширяемая взрывом труба замыкает контур, далее точка контакта на основании конуса движется по виткам спирали, продавливая их изоляцию и закорачивая виток за витком, усиливая при этом ток, который осциллирует, так как емкость контура существенна. Период электрических колебаний уменьшается по мере сокращения индуктивности контура, но не становится меньше сотни наносекунд, что не очень благоприятно (волны в сотни раз «длиннее» самого ВМГЧ). Но эти «несущие» волны – не основные в излучении: компрессия поля трубой, усиливая ток тем больше, чем выше его мгновенное значение, приводит к появлению «быстрых» гармоник. Антенной служат еще не закороченные трубой витки обмотки

   Рис. 3.11
   Развитие источников радиочастотного электромагнитного излучения

   Источники, в которых используется ВВ, срабатывают однократно. Источники же невзрывного типа могут долго излучать в частотном или непрерывном режиме, но, поскольку их схемы включают множество таких элементов, как индуктивные и емкостные накопители, плотность электромагнитной энергии в которых много ниже, чем химической во в ВВ (до 10000 Дж/куб. см), невзывные источники большой мощности представляют собой громоздкие и тяжелые устройства (рис. 3.12). УПИ меньшей мощности были применены в крупных авиабомбах.

   Рис. 3.12
   Излучатель гигаваттной мощности Техасского технологического университета

   В отличие от УПИ на основе электровакуумного прибора, взрывной источник генерирует не луч, а поток РЧЭМИ во всех направлениях, но зато СШИ компактны, могут быть размещены в боеприпасах малых (рис. 3.13) и средних калибров, и, помимо поражений электроники, наносят повреждения осколками.
   Источники всех типов нуждаются для своей работы в обеспечении электроэнергией. Сообщалось, что в ходе операции «Буря в пустыне» крылатые ракеты, несущие электровакуумные излучатели, прорывали иракскую ПВО. Энергия для питания УПИ отбиралась от двигателя ракеты. Маршевый полет при этом невозможен: ракета падала, как только начинал работать источник, зато он успевал «выдать» несколько десятков импульсов излучения.


   Рис. 3.13
   Общий вид 42-мм электромагнитной реактивной гранаты «Атропус» с боевой частью на основе пьезоэлектрического генератора частоты и пример эффекта временного ослепления автоматической миллиметровой РЛС наведения системы активной защиты танка при перехвате ракеты. Левая осциллограмма – нормальный сигнал от блока определения дальности до цели. Правая осциллограмма – после разрыва ЭМБП в нескольких метрах от РЛС под углом 160° по отношению к оси антенны. Система потеряла способность оценивать расстояние до цели, пуск и перехват не состоялись. Момент разрыва ЭМБП «Атропус» показан стрелкой

   Для боеприпасов небольших калибров требуются автономные и значительно более компактные системы энергообеспечения. Первичный импульс тока или напряжения может быть получен от ферромагнитного или пьезоэлектрического генератора (рис. 3.14), при размагничивании или деполяризации его рабочего тела ударной волной, формируемой взрывом ВВ. Величина энергии может составить при этом единицы – десятки Джоулей, чего в ряде случаев бывает недостаточно и требует применения усилителя – взрывомагнитного генератора (ВМГ, рис. 3.15).

   Рис. 3.14
   Слева: схема ферромагнитного генератора. Формируемая взрывом мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей рабочее тело (магнит 2). К обмотке подключена нагрузка 3.
   Справа: схема пьезоэлектрического генератора. Заряд взрывчатого вещества (ВВ) 1 состоит из двух конусов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись (иначе – произойдет пробой), переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток протекает через конденсатор, образованный металлизованными поверхностями на РТ и нагрузку 4, подсоединенные к обмотке 5. Взрыв используется лишь как спусковой механизм, но его энергия на пять порядков превышает заключенную в веществе рабочего тела


   Рис. 3.15
   Вверху: схема спирального взрывомагнитного генератора. Металлическая труба 1, заполненная взрывчатым веществом 2, окружена обмоткой 3. В обмотке первичным источником энергии создается начальный магнитный поток, далее подрывается ВВ и газы взрыва растягивают трубу в конус, основание которого движется по виткам обмотки, замыкая их и приближая точку контакта к индуктивной нагрузке 4, куда и вытесняется магнитный поток. Химическая энергия, содержащаяся в ВВ, при этом преобразуется в энергию импульса тока, величина которого в нагрузке может достигать десятков миллионов ампер
   Ниже – произведенный фирмой WMTD имитатор ВМГ (иногда используется также название «магнитокумулятивный генератор», МКГ)

   Доктором Коппом предложена концепция электромагнитной авиабомбы (рис. 3.16): такая бомба должна включать первичный источник питания (батареи), емкостной накопитель, ВМГ, высоковольтный взрывной трансформатор и излучатель – электроваккумный прибор, называемый виркатором (рис. 3.17).

   Рис. 3.16
   Концептуальная схема авиабомбы с узкополосным излучателем на основе электровакуумного прибора – виркатора и системы его энергообеспечения на основе магнитокумулятивного (взрывомагнитного) генератора


   Рис. 3.17
   Фотография и схема излучателя с виртуальным катодом – виркатора. РЧЭМИ генерируется при колебаниях объемного заряда электронов. Когда между эмиттером Э и сеткой С прикладывается от трансформатора импульс высокого напряжения, формируется электронное облако – виртуальный катод ВК (откуда и название прибора: «ВирКатор»), Электроны ускоряются к сетке, затем замедляются, пролетев сквозь ее ячейки, и колеблются далее относительно сетки вплоть до нейтрализации заряда (все это возможно лишь в вакууме, где электронам не мешают столкновения с молекулами). Поскольку движение электронов при этом не равномерно-прямолинейное, оно происходит с ускорением, и – для заряженных частиц – с излучением

   3.2.3. Радиочастотное оружие на полупроводниковой элементной базе

   Источники РЧЭМИ на полупроводниковой элементной базе компактны и могут быть размещены, включая батареи и антенну, в небольшом кейсе (рис. 3.18). Они способны генерировать импульсы РЧЭМИ длительностью от пикосекунд до микросекунд. Частота следования импульсов может быть подобрана такой, которая соответствует циклу обработки информации в компьютере или другой цели, что увеличивает эффект облучения.

   Рис. 3.18
   Источник РЧЭМИ на полупроводниковой элементной базе, размещенный в кейсе

   3.2.4. Базирование радиочастотного оружия

Радиочастотное оружие авиационного базирования
   На борту самолета можно разместить генераторы РЧЭМИ любого типа и облучить значительное число целей. Энергия, необходимая для бортового излучателя РЧЭМИ, может отбираться от двигателей, а антенна – смонтирована на подвеске (рис. 3.19) или интегрирована в корпус. Невзрывные источники РЧЭМИ способны работать в течение десятков часов, однако должны быть приняты меры, чтобы их излучение не повредило электронику самолета-носителя.

   Рис. 3.19
   Применение невзрывного источника РЧЭМИ с самолета радиоэлектронной борьбы
Радиочастотное оружие на автотранспортных средствах
   Размещение РЧО на грузовике позволяет террористам скрытно поразить намеченные цели. Один из сценариев – применение РЧО из взятого напрокат автомобиля, с замаскированной антенной, оставленного недалеко от взлетно-посадочной полосы гражданского аэродрома.
   Для применения полицейскими силами фирмой «Рейтеон» разработан автомобиль с УПИ частотой 96 ГГц (рис. 3.20), предназначенный для разгона демонстрантов: на расстояниях до 200 м РЧЭМИ причиняет им легкие ожоги.

   Рис. 3.20
   Источник РЧЭМИ, разработанный фирмой «Рейтеон» (США), установленный за базе автомобиля, предназначенного для разгона демонстрантов

   В военной прессе России не раз упоминались мощные источники РЧЭМИ, созданные для применения в качестве оружия. УПИ «Ранец» (рис. 3.21), установлен на автомобиле высокой проходимости. «Ранец» предлагался к продаже на нескольких оружейных выставках, он генерирует короткие (10–20 не), мощные (более 500 МВт) импульсы в сантиметровом диапазоне длин волн. Декларировалась (но, насколько известно, не подтверждена) способность этого источника «обеспечивать круговую оборону от высокоточного оружия в радиусе до 10 км».

   Рис. 3.21
   Российский источник узкополосного РЧЭМИ «Ранец», установленный на автомобиле и предназначенный для обороны от высокоточного оружия

   Известны также системы, вызывающие срабатывание или повреждающие «интеллект» неконтактных мин (рис. 3.22). Экспериментальный образец, предназначенный для этой цели, создан германской фирмой «Райнметалл» и размещен на автомобиле «Унимог».


   Рис. 3.22
   Слева – подрыв мины с неконтактным взрывателем, после ее облучения источником РЧЭМИ, установленным на автомобиле. Справа – антенны разработанной германской фирмой «Райнметалл» системы разминирования, установленные на автомобиле «Унимог»
Чтение онлайн



1 2 3 4 5 6 7 8 9 10 [11] 12 13 14 15 16

Навигация по сайту
Реклама


Читательские рекомендации

Информация