А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
0-9 A B C D I F G H IJ K L M N O P Q R S TU V WX Y Z #


Чтение книги "Загадки, фокусы и развлечения (сборник)" (страница 8)

   Завтрак с головоломками

Полтинник и гривенник. – Как мерить и взвешивать с помощью монет. – Великан и карлики. – Монета в 1000 рублей. – Два арбуза. – Геометрия торговцев. – Вес рыбы. – Задача о равноволосых людях. – Два гренадера. – Пароход и щепка. – Отгадывание задуманных чисел и спичек.
   – Вчера задали мне любопытную задачу, – рассказывал однажды товарищ брата, когда все мы сидели за завтраком. – В бумажке вырезано круглое отверстие величиной с гривенник, и надо через него продеть полтинник. Уверяли меня, что это возможно.
   – Сейчас посмотрим, возможно ли это, – ответил брат. – Он справился в своей записной книжке, сделал какие-то выкладки и объявил:
   – Да, возможно.
   – Но как же это? Я не понимаю, – недоумевал гость.
   – А я понимаю, – вмешался я в разговор: – сначала продеть один гривенник, потом второй, третий, четвертый и пятый. Тогда пройдет полтинник.
   – Не полтинник, а 50 копеек, – поправил брат. – Надо же продеть именно полтинник.
   Он вынул из кармана обе монеты, приложил гривенник к бумажке, обвел его карандашом и вырезал кружок маленькими складными ножницами своего перочинного ножа.
   – А теперь проденем через это отверстие полтинник.
   С недоверчивым ожиданием следили мы за его пальцами. Он изогнул бумажку так, что круглое отверстие вытянулось в прямую узкую щель. Представьте наше изумление, когда через эту щель действительно проскользнул полтинник!
   – Хоть и вижу своими глазами, но все еще не понимаю. Ведь отверстие меньше полтинника! – сказал гость.
   – Сейчас все станет ясно. Ширина гривенника у меня записана: 17 1/3 миллиметра. Окружность отверстия будет в 3 1/7 раза больше, т. е. свыше 54 миллиметров. Теперь сообразите, какой длины должна получиться щель, когда я растягиваю кружок в прямую линию. Она будет вдвое меньше окружности отверстия, т. е. 27 миллиметров с небольшим. Поперечник же полтинника не достигает 27 миллиметров, и, следовательно, полтинник должен пройти через такую щель. Правда, надо еще принять в расчет и толщину монеты; но дело в том, что когда обводят гривенник карандашом, кружок неизбежно получается чуть больше его истинных размеров; поэтому маленький запас для толщины монеты всегда имеется.
   – Теперь я понял, – сказал товарищ брата. – Это все равно, как если бы я обтянул полтинник по диаметру нитяной петлей и затем сложил бы эту петлю кружочком. Через такой кружочек полтинник, разумеется, не пройдет, между тем как через петлю он проходил.
   – Ты, кажется, помнишь наизусть размеры всех монет, – обратилась к брату сестра.
   – Не всех: только тех, величину которых легко запомнить. Остальные у меня записаны.
   – Какие же легко запомнить? По-моему, все одинаково трудно.
   – Не скажи. Разве трудно запомнить, что три полтинника, положенные в ряд, составляют 8 сантиметров.
   – Я этого не подозревал, – признался гость. – Ведь зная это, можно производить измерения с помощью монет. Полезно для Робинзонов, у которых, по счастью, сохранился в кармане полтинник.
   Петля вокруг монеты.

   – Этим и воспользовались герои одного из романов Жюля Верна, потому что и для французских монет существует простое соотношение между их размерами и метром. И заметьте: монеты помогут Робинзонам производить также и взвешивания. Вес рублевой монеты – 20 граммов, полтинника – 10 граммов.
   – Так рубль по объему ровно вдвое больше полтинника? – спросила сестра.
   – Ровно вдвое.
   – Однако рублевая монета не кажется такою: она не толще полтинника вдвое и не шире его вдвое, – возразила она.
   – Ей и не полагается быть вдвое толще и шире. Если бы она такою была, она имела бы объем не вдвое больше, а…
   – Вчетверо, понимаю.
   – Ошибаешься: ввосьмеро! Ведь если монета вдвое шире, то она и вдвое длиннее; а так как она еще и вдвое толще, то объем ее больше в 2 x 2 x 2, т. е. в 8 раз.
   – Чтобы иметь двойной объем – сказал гость, – рубль должен быть шире и толще полтинника в такое число раз, которое, будучи умножено на себя раз и еще раз, дало бы в результате 2.
   – Верно, – подтвердил брат. – И число это примерно равно 1 1/4. Умножьте 1 1/4 x 1 1/4 x 1 1/4.
   Вы получите 5x5x5/4x4x4, или 125/64, почти ровно 2.
   – А как на самом деле?
   – Так и есть: рубль шире полтинника в 1 1/4 раза.
   – Это напоминает мне, – сказал гость, – историю о том человеке, которому приснилась серебряная монета в тысячу рублей. Она снилась ему поставленною на ребро и была высотою с четырехэтажный дом; между тем, если бы такая монета в самом деле была изготовлена, она, конечно, была бы не выше человеческого роста.
   – Да, она должна была бы быть, – сказал брат, – всего в десять раз шире обычных размеров, потому что 10 x 10 x 10 = 1000. Значит, поставленная на ребро, она достигала бы в высоту только 33 сантиметра, – в 6 раз меньше человеческого роста, – а не 33 метра, как, вероятно, думалось твоему сновидцу.
   – Отсюда, между прочим, следует, – сказал гость, – что если один человек на 1/8 выше другого и на столько же толще, то он должен быть вдвое тяжелее.
   Монета в тысячу рублей.

   – Вывод правильный.
   – Во сколько же раз тогда какой-нибудь великан тяжелее карлика? – осведомилась сестра. – Наверное, раз в десять?
   – В сотни раз! – ответил брат. – Самый высокий великан, о котором мне доводилось читать, был один эльзасец – на целый метр выше среднего человеческого роста. Это был, следовательно, детина в 275 сантиметров высоты.
   – А карлик?
   – Имеются свидетельства о взрослых карликах менее 40 сантиметров высоты, т. е. ниже исполина эльзасца в 7 раз. Значит, если бы на одну чашку весов поставить нашего великана, то на другую надо бы для равновесия поместить 7 x 7 x 7 = 343 карлика, целую толпу!
   – Кстати, – вспомнила сестра, – разрешите мне такую задачу, с которою я встретилась на практике. Продаются два арбуза неодинаковых размеров. Один примерно на четвертую долю шире другого, а стоит он в 1 1/2 раза дороже. Какой из них выгоднее купить?
   Задача о двух арбузах.

   – Ну-ка, реши, – обратился ко мне брат.
   – Если арбуз дороже в 1 1/2 раза, а шире только в 1 1/4 раза, то ясное дело, что дешевле тот арбуз, который поменьше.
   – Ну нет! Ведь мы сейчас толковали о том, что если предмет шире, толще и выше в 1 1/4 раза, то объем его больше 1 1/4 x 1 1/4 x 1 1/4, т. е. вдвое. Значит, выгоднее купить крупный арбуз; он дороже только в полтора раза, а съедобного вещества в нем больше в два раза.
   – Почему же за него просили не вдвое дороже, а только в полтора? – спросил гость.
   – Потому что торговцы не знают геометрии. Но не знают ее и покупатели и зачастую отказываются поэтому от выгодных покупок. Можно смело утверждать, что крупные арбузы всегда выгоднее покупать, чем мелкие, потому что они расцениваются торговцами ниже их истинной стоимости; но большинство покупателей не подозревает об этом.
   – Значит, и крупные яйца выгоднее покупать, нежели мелкие?
   – Безусловно, они обойдутся дешевле. Впрочем, немецкие торговцы догадливее наших: продают яйца на вес; тогда ошибки в расценке не будет.
   – Мне задали еще одну занятную задачу, которую я не сразу решил, – сказал гость. – Одного человека спросили, сколько весит пойманная им рыба. Он ответил: «три четверти килограмма и еще три четверти своего веса». Сколько же весила рыба?
   – Ну, задача не хитрая, – ответил брат. – Ясно, что 3/4 килограмма есть вес остающейся 1/4 рыбы. Вся рыба весит в 4 раза больше, чем 3/4 килограмма, т. е. 3 килограмма. Я предложу вам задачу потруднее: есть ли на свете люди с совершенно одинаковым числом волос на голове?
   – Знаю, – проворно вмешался я. – Есть. Все лысые люди имеют одинаковое число волос!
   – А не лысые?
   – Те, конечно, нет.
   – Я о них и спрашивал. Впрочем, могу поставить вопрос даже и так: «есть ли в Москве люди с одинаковым числом волос?» – сказал брат.
   – Мне думается, – вступилась за меня сестра, – что было бы совершенно невероятным совпадением, если бы такие люди нашлись. Хотя это теоретически и возможно, я смело поставила бы тысячу рублей против копейки, что не найдется ни одной пары людей с одинаковым числом волос не только в Москве, но и в целом мире.
   – А я на твоем месте не ставил бы и копейки против тысячи рублей, потому что утверждать это – значит готовить себе верный проигрыш, – ответил брат. – Не скажу, чтобы было легко отыскать пару равноволосых людей, но что таких пар должно иметься сотни тысяч в одной Москве, в этом я твердо убежден.
   – Как! В одной только Москве сотни тысяч пар равноволосых людей? Ты шутишь!
   – Нисколько. Подумай, чего больше: людей в Москве или волос на голове?
   – Людей, конечно, больше. Но при чем это здесь?
   – А вот при чем. Если людей в Москве больше, чем у каждого из них имеется волос, то число волос неизбежно должно повторяться. Обычно принимают, что у человека на голове около 200000 волос; людей же в Москве раз в 8 больше. Первые 200000 москвичей пусть имеют каждый различное число волос. Но сколько волос прикажешь иметь 200001-му москвичу? Хочешь не хочешь, а придется допустить, что у него повторяется число волос одного из предыдущих московских граждан, потому что больше 200000 волос на голове ему иметь не полагается. И вообще, каждый из следующих 200000 граждан неизбежно должен иметь число волос, равное числу волос кого-нибудь из первых 200000 человек. И будь в Москве даже всего 400000 жителей, в ней имелось бы не менее 200000 пар людей с одинаковым числом волос.
   – Вижу, что я с волосами опростоволосилась, – призналась сестра.
   – Теперь еще задача, – продолжал брат. – Расстояние между двумя городами, стоящими на реке, пароход проходит по течению в 4 часа, против течения – в 6 часов. Во сколько времени проплывет то же расстояние щепка? Впрочем, мы лучше предоставим эту задачу тебе, – сказал брат, обращаясь ко мне. – Ведь ты уже проходил дроби; ну так значит должен с ней справиться. А сами давайте лучше загадывать числа; я буду отгадчиком. Задумайте какое-нибудь число. Умножьте его на 9. В результате зачеркните одну цифру – какую хотите, кроме нуля и 9. Теперь прочтите мне в любом порядке все остальные цифры: я отгадаю, какую вы зачеркнули.
   Один за другим читали мы брату незачеркнутые цифры и едва кончали чтение, как он называл нам недостающую цифру.
   – Теперь по-иному, – продолжал брат, не объясняя секрета. – Задумайте число. Припишите к нему 0. Вычтите из полученного числа задуманное. Прибавьте 63. Готово? Теперь зачеркните, как прежде, любую цифру и назовите мне остальные.
   Мы выполнили требуемое – и брат безошибочно назвал каждому из нас зачеркнутую цифру.
   – Пусть кто-нибудь из вас, хотя бы ты, – обратился брат ко мне, – напишет незаметно для меня какое-нибудь трехзначное число. Написал? Припиши к нему то же число еще раз. Сделано? Теперь все шестизначное число раздели на 7.
   – Легко сказать: раздели на 7… Бывает, что и не делится.
   – Разделится без остатка. Получил результат? Передай сестре.
   И в самом деле: число разделилось без остатка. Я передал бумажку сестре.
   – А ты – распоряжался брат, – раздели результат на 11.
   – Тоже разделится?
   – Да… Видишь, разделилось! Не показывая мне, передай результат дальше.
   Гостю было предложено разделить полученное число на 13.
   – Неужели и тут деление будет без остатка?
   – Без остатка. Готово?
   Взяв из рук гостя полученный им результат, брат, даже не взглянув на бумажку, вручил ее мне со словами:
   – Вот число, которое ты задумал.
   Я развернул бумажку: на ней действительно было написано первоначально задуманное мною число…
   – Чародейство какое-то! – воскликнула сестра.
   – Простой арифметический фокус. Разгадка его так же проста, как и следующего фокуса. Я берусь предсказать наперед сумму трех многозначных чисел, из которых два еще не написаны. Напиши любое пятизначное число, – сказал мне брат.
   Я написал наобум: 67834. Брат оставил пробел для двух слагаемых, подвел черту и подписал будущую сумму:
   – Второе слагаемое может написать кто-нибудь из вас, а третье я напишу сам.
   Гость взял бумажку и дописал:
   Тогда брат быстро вписал третье слагаемое:
   Проверили сумму: правильно!
   – Неужели ты успел так быстро сложить оба числа и вычесть их из суммы?
   – О нет, таким искусством я не обладаю. К тому же, я могу повторить фокус и с 5-ю слагаемыми, и притом, если хотите, с восьмизначными числами.
   И брат действительно проделал это. Получилась следующая картина, на которой римскими цифрами указан порядок написания чисел:
   Эту сумму брат безошибочно предсказал еще тогда, когда на бумажке было написано только первое слагаемое.
   – Вы не думаете, конечно, что я успел сложить 3 таких длинных числа, вычесть результат из суммы и остаток разбить на два слагаемых. Здесь дело гораздо проще, и я уверен, что, пораздумав на досуге, вы догадаетесь, в чем секрет.
   – Завтра я еду в Москву, – сказал товарищ брата, – и, сидя в вагоне, буду коротать время за этими головоломками.
   – Для одоления вагонной скуки могу тебя снабдить еще несколькими задачами. Знакома ли тебе, например, такая: написать 7 пятью двойками?
   – Задача-шутка, конечно?
   – Нет, задача как задача. Другими словами: надо подыскать такую комбинацию из пяти двоек и знаков действий, чтобы составилось выражение, равное 7. Впрочем, я скажу тебе ответ с тем, чтобы стало ясно, как подобные задачи надо решать. Остальные решишь уже самостоятельно. Пятью двойками можно написать 7 так:
   2 + 2 + 2 + 2/2 = 7
   – Вот оно что! В таком случае я знаю еще одно решение:
   2 x 2 x 2 – 2/2 = 7
   – Я вижу, ты уловил суть дела. Запиши теперь ряд подобных задач про запас:

   Пятью двойками написать 28
   Четырьмя двойками « 23
   Пятью тройками « 100
   Пятью единицами « 100
   Пятью пятерками « 100
   Четырьмя девятками « 100

   – Ты, кажется, умеешь отгадывать задуманные спички, – сказал брату гость. – Не покажешь ли нам в заключение этот фокус?
   – Пожалуй. Как я показывал на днях у вас? Да?
   – Именно! Совершенно так же.
   Брат в беспорядке раскидал перед собою на столе десяток спичек и объявил, что сейчас уйдет в соседнюю комнату, а возвратившись, укажет ту самую спичку, которую в его отсутствии кто-нибудь из нас задумает. Необходимо лишь, чтобы задумавший дотронулся пальцем до той спички, которую он избрал, – это нужно для контроля, – и чтобы, разумеется, расположения спичек никто не менял: как лежали, – пусть и лежат.
   Когда брат ушел, мы тщательно заперли за ним дверь, а я даже плотно заткнул бумагой замочную скважину. Сестра чуть коснулась пальцем одной из спичек, и мы крикнули брату:
   – Готово. Входи!
   Брат вошел в комнату, приблизился к столу и безошибочно указал ту именно спичку, которая была задумана сестрой.
   Повторили опыт раз десять; задумывали спичку то я, то сестра, то гость – и всякий раз брат без промаха отгадывал задуманную спичку.
   Мы с сестрой были озадачены до одурения, гость то громко выражал свое изумление, то так же громко хохотал, и всем нам нетерпелось узнать секрет этого чародейства.
   – Пора объяснить вам, в чем дело, – смилостивился наконец брат. – Позвольте представить вам моего неизменного помощника в этом деле, – театрально сказал он, указывая на гостя. – А здесь, на столе, лежит его портрет, нарисованный спичками. Не особенно похоже, но узнать можно: вот эти две спички – глаза; это – лоб; вот два уха; вот нос, рот, подбородок, шея, волосы. Когда я вхожу в комнату, я первым долгом бросаю взгляд на своего помощника. А он то поглаживает подбородок, то трет глаз, правый или левый, то чешет нос, и т. п. И с меня достаточно: я уже знаю, какая спичка задумана.
   Портрет из спичек.

   – Так вы были в заговоре с братом, – со смехом сказала гостю сестра. – Если бы я это подозревала, я показывала бы спички тайком от вас.
   – И тогда, разумеется, я ни разу не отгадал бы, – охотно признал брат. – А теперь пора кончать наш «головоломный» завтрак; он и так уж затянулся чересчур долго.
   Портрет из спичек.

   Вам, вероятно, интересно знать, как разрешались те задачи, которые брат предоставил нам решить самостоятельно.
   Задача о пароходе и щепке решается так. Если пароход проходит все расстояние по течению в 4 часа, то в один час он проходит 1/4 этого расстояния. Против течения он проходит 1/6 того же расстояния (потому что все оно проходится в 6 часов). Ясно, что если из 1/4 отнять 1/6, мы получим двойное расстояние, проходимое речною водою, т. е. двойную скорость течения. Почему двойную? Потому что 1/6 есть собственная скорость парохода плюс скорость течения, а 1/6 – скорость парохода, минус скорость течения; первое больше второго на две скорости течения. Но 1/4 – 1/6 ровно 1/12. Половину этого составляет 1/24. Значит, речная вода проходит в час 1/24 расстояния между городами, а все расстояние пробегает в 24 часа. Во столько времени и проплывет это расстояние щепка.
   Отгадывание зачеркнутых цифр основано на том, что каждое число, которое делится на 9 без остатка, имеет сумму цифр, тоже делящуюся на 9. В первом случае задуманное число умножалось на 9, – следовательно, сумма цифр результата должна делиться на 9. Зная это, легко сообразить, какой цифры не хватает, чтобы сумма названных цифр делилась на 9. Понятно также, что зачеркивание нуля или 9 не мешает сумме остальных цифр делиться на 9; вот почему эти цифры и запрещалось зачеркивать.
   Во втором случае задуманное число сначала умножалось на 10 (приписыванием нуля), затем от него отнимали задуманное число. Это равносильно умножению на 9. Прибавка числа 63, тоже делящегося на 9, не мешает результату делиться на 9. Остальное понятно само собою.
   Следующий фокус – с делением на 7, 11 и 13 – на первый взгляд кажется очень сложным. На деле же он прост. Когда мы приписываем к трехзначному числу его самого, мы в сущности умножаем его на 1001. Например:
   723723 = 723000 + 723 = 723 x 1000 + 723 = 723 x 1001.
   Но 1001 = 7 x 11 x 13. Неудивительно, что, разделив на 7, на 11 и на 13, т. е. на 1001, мы снова получаем первоначально взятое число.
   Секрет отгадывания суммы легко раскрыть, если заметить, что брат написал в первом случае сумму на 99999 большую того числа, которое написал я: 167833-67834 = 99999. (Прибавить 99999, т. е. 100000 без 1, очень легко.) А затем, когда гость написал 39458, брат приписал число, которое вместе с предыдущим составляет 99999: сделать это легко, вычитая каждую цифру из 9.
   Во втором случае брат поступил сходным способом, только сумму увеличил на 2 x 99999999, а добавление до 99999999 дважды вписал среди слагаемых.
   Решение остальных задач ясно из следующего:
   28 = 22 + 2 + 2 + 2
   23 = 22 + 2/2
   100 = 33 x 3 + 3/3
   100 = 111-11
   100 = 5 x 5 x 5 – 5 x 5, или
   100 = (5 + 5 + 5 + 5) x 5
   100 = 99 9/9
Чтение онлайн



1 2 3 4 5 6 7 [8] 9 10 11 12 13 14 15 16

Навигация по сайту
Реклама


Читательские рекомендации

Информация