А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
0-9 A B C D I F G H IJ K L M N O P Q R S TU V WX Y Z #


Чтение книги "Краткая история времени..." (страница 1)

   Стивен Хокинг
   КРАТКАЯ ИСТОРИЯ ВРЕМЕНИ.
   От большого взрыва до черных дыр

   Благодарности

   Книга посвящается Джейн
   Я решил попробовать написать популярную книгу о пространстве и времени после того, как прочитал в 1982 г. курс Лёбовских лекций в Гарварде. Тогда уже было немало книг, посвященных ранней Вселенной и черным дырам, как очень хороших, например книга Стивена Вайнберга «Первые три минуты», так и очень плохих, которые здесь незачем называть. Но мне казалось, что ни в одной из них фактически не затрагиваются те вопросы, которые побудили меня заняться изучением космологии и квантовой теории: откуда взялась Вселенная? как и почему она возникла? придет ли ей конец, а если придет, то как? Эти вопросы интересуют всех нас. Но современная наука очень насыщена математикой, и лишь немногочисленные специалисты достаточно владеют последней, чтобы разобраться в этом. Однако основные представления о рождении и дальнейшей судьбе Вселенной можно изложить и без помощи математики так, что они станут понятны даже людям, не получившим научного образования. Это я и пытался сделать в моей книге. Читателю судить о том, насколько я преуспел.
   Мне сказали, что каждая включенная в книгу формула вдвое уменьшит число покупателей. Тогда я решил вообще обходиться без формул. Правда, в конце я все-таки написал одно уравнение – знаменитое уравнение Эйнштейна Е=mc^2. Надеюсь, оно не отпугнет половину моих потенциальных читателей.
   Если не считать того, что я заболел боковым амиотрофическим склерозом, то почти во всем остальном мне сопутствовала удача. Помощь и поддержка, которые мне оказывали моя жена Джейн и дети Роберт, Люси и Тимоти, обеспечили мне возможность вести довольно-таки нормальный образ жизни и добиться успехов в работе. Мне повезло и в том, что я выбрал теоретическую физику, ибо она вся вмещается в голове. Поэтому моя физическая немощь не стала серьезным минусом. Мои научные коллеги, все без исключения, оказывали мне всегда максимальное содействие.
   На первом, «классическом» этапе моей работы моими ближайшими помощниками и сотрудниками были Роджер Пенроуз, Роберт Герок, Брендон Картер и Джордж Эллис. Я благодарен им за помощь и за совместную работу. Этот этап завершился изданием книги «Крупномасштабная структура пространства-времени», которую мы с Эллисом написали в 1973 г. (Хокинг С., Эллис Дж. Крупномасштабная структура пpoстранства-времени. M.: Мир, 1976).
   Я бы не советовал читающим следующие далее страницы обращаться к ней за дополнительной информацией: она перегружена математикой и тяжела для чтения. Надеюсь, что с тех пор я научился писать более доступно.
   На втором, «квантовом» этапе моей работы, начавшемся в 1974 г., я в основном работал с Гари Гиббонсом, Доном Пэйджем и Джимом Хартлом. Я очень многим им обязан, как и своим аспирантам, которые оказывали мне огромную помощь и в «физическом», и в «теоретическом» смысле этого слова. Необходимость не отставать от аспирантов была чрезвычайно важным стимулом и, как мне кажется, не позволяла мне застрять в болоте.
   В работе над книгой мне очень много помогал Брайен Уитт, один из моих студентов. В 1985 г., набросав первый, примерный план книги, я заболел воспалением легких. Пришлось лечь на операцию, и после трахеотомии я перестал говорить, а тем самым почти лишился возможности общаться. Я думал, что не смогу закончить книгу. Но Брайен нс только помог мне ее переработать, но и научил пользоваться компьютерной программой общения Living Center, которую мне подарил Уолт Уолтош, сотрудник фирмы Words Plus, Inc., Саннивейл (шт. Калифорния). С ее помощью я могу писать книги и статьи, а также разговаривать с людьми посредством синтезатора речи, подаренного мне другой саннивейлской фирмой Speech Plus. Дэвид Мэйсон установил на моем кресле-коляске этот синтезатор и небольшой персональный компьютер. Такая система все изменила: мне стало даже легче общаться, чем до того как я потерял голос.
   Многим из тех, кто ознакомился с предварительными вариантами книги, я благодарен за советы, касающиеся того, как ее можно было бы улучшить. Так, Петер Газзарди, мой редактор издательства Bantam Books, слал мне письмо за письмом с замечаниями и вопросами по тем местам, которые, по его мнению, были плохо объяснены. Признаться, я был сильно раздражен, получив огромный список рекомендуемых исправлений, но Газзарди оказался совершенно прав. Я уверен, книга стала лучше благодаря тому, что Газзарди тыкал меня носом в ошибки.
   Я выражаю глубокую благодарность моим помощникам Колину Уилльямсу, Дэвиду Томасу и Рэймонду Лэфлемму, моим секретарям Джуди Фелле, Энн Ральф, Шерил Биллингтон и Сью Мэйси и моим медсестрам. Я бы ничего не смог достичь, если бы все расходы на научные исследования и необходимую медицинскую помощь не взяли на себя Гонвилл-энд-Кайюс-колледж, Совет по научным и техническим исследованиям и фонды Леверхулма, Мак-Артура, Нуффилда и Ральфа Смита. Всем им я очень благодарен.

   Стивен Хокинг. 20 октября 1987 г.

   Предисловие

   Мы живем, почти ничего не понимая в устройстве мира. Не задумываемся над тем, какой механизм порождает солнечный свет, который обеспечивает наше существование, не думаем о гравитации, которая удерживает нас на Земле, не давая ей сбросить нас в пространство. Нас не интересуют атомы, из которых мы состоим и от устойчивости которых мы сами существенным образом зависим. За исключением детей (которые еще слишком мало знают, чтобы не задавать такие серьезные вопросы), мало кто ломает голову над тем, почему природа такова, какова она есть, откуда появился космос и не существовал ли он всегда? не может ли время однажды повернуть вспять, так что следствие будет предшествовать причине? есть ли непреодолимый предел человеческого познания? Бывают даже такие дети (я их встречал), которым хочется знать, как выглядит черная дыра, какова самая маленькая частичка вещества? почему мы помним прошлое и не помним будущее? если раньше и правда был хаос, то как получилось, что теперь установился видимый порядок? и почему Вселенная вообще существует?
   В нашем обществе принято, что родители и учителя в ответ на эти вопросы большей частью пожимают плечами или призывают на помощь смутно сохранившиеся в памяти ссылки на религиозные легенды. Некоторым не нравятся такие темы, потому что в них живо обнаруживается узость человеческого понимания.
   Но развитие философии и естественных наук продвигалось вперед в основном благодаря подобным вопросам. Все больше взрослых людей проявляют к ним интерес, и ответы иногда бывают совершенно неожиданными для них. Отличаясь по масштабам как от атомов, так и от звезд, мы раздвигаем горизонты исследований, чтобы охватить как очень маленькие, так и очень большие объекты.
   Весной 1974 г., примерно за два года до того, как космический аппарат «Викинг» достиг поверхности Марса, я был в Англии на конференции, организованной Лондонским королевским обществом и посвященной возможностям поиска внеземных цивилизаций. Во время перерыва на кофе я обратил внимание на гораздо более многолюдное собрание, проходившее в соседнем зале, и из любопытства вошел туда. Так я стал свидетелем давнего ритуала – приема новых членов в Королевское общество, которое является одним из старейших на планете объединений ученых. Впереди молодой человек, сидевший в инвалидном кресле, очень медленно выводил свое имя в книге, предыдущие страницы которой хранили подпись Исаака Ньютона. Когда он, наконец, кончил расписываться, зал разразился овацией. Стивен Хокинг уже тогда был легендой.
   Сейчас Хокинг в Кембриджском университете занимает кафедру математики, которую когда-то занимал Ньютон, а позже П. А. М. Дирак – два знаменитых исследователя, изучавшие один – самое большое, а другой – самое маленькое. Хокинг – их достойный преемник. Эта первая популярная книга Хокипга содержит массу полезных вещей для широкой аудитории. Книга интересна не только широтой своего содержания, она позволяет увидеть, как работает мысль ее автора. Вы найдете в ней ясные откровения о границах физики, астрономии, космологии и мужества.
   Но это также книга о Боге… а может быть, об отсутствии Бога. Слово «Бог» часто появляется на ее страницах. Хокинг отправляется на поиски ответа на знаменитый вопрос Эйнштейна о том, был ли у Бога какой-нибудь выбор, когда он создавал Вселенную. Хокинг пытается, как он сам пишет, разгадать замысел Бога. Тем более неожиданным оказывается вывод (по меньшей мере временный), к которому приводят эти поиски: Вселенная без края в пространстве, без начала и конца во времени, без каких-либо дел для Создателя.
   Карл Саган, Корнеллский университет, Итака, шт. Нью-Йорк.

   1. Наше представление о Вселенной

   Как-то один известный ученый (говорят, это был Бертран Рассел) читал публичную лекцию об астрономии. Он рассказывал, как Земля обращается вокруг Солнца, а Солнце, в свою очередь, обращается вокруг центра огромного скопления звезд, которое называют нашей Галактикой. Когда лекция подошла к концу, из последних рядов зала поднялась маленькая пожилая леди и сказала: «Все, что вы нам говорили, – чепуха. На самом деле наш мир – это плоская тарелка, которая стоит па спине гигантской черепахи». Снисходительно улыбнувшись, ученый спросил: «А на чем держится черепаха?» – «Вы очень умны, молодой человек, – ответила пожилая леди. – Черепаха – на другой черепахе, та – тоже на черепахе, и так все ниже и ниже».
   Такое представление о Вселенной как о бесконечной башне из черепах большинству из нас покажется смешным, но почему мы думаем, что сами знаем лучше? Что нам известно о Вселенной, и как мы это узнали? Откуда взялась Вселенная, и что с ней станется? Было ли у Вселенной начало, а если было, то что происходило до начала? Какова сущность времени? Кончится ли оно когда-нибудь? Достижения физики последних лет, которыми мы частично обязаны фантастической новой технике, позволяют наконец получить ответы хотя бы на отдельные из таких давно поставленных вопросов. Пройдет время, и эти ответы, может быть, станут столь же очевидными, как то, что Земля вращается вокруг Солнца, а может быть, столь же нелепыми, как башня из черепах. Только время (чем бы оно ни было) решит это.
   Еще в 340 г. до н. э. греческий философ Аристотель в своей книге «О небе» привел два веских довода в пользу того, что Земля не плоская тарелка, а круглый шар. Во-первых, Аристотель догадался, что лунные затмения происходят тогда, когда Земля оказывается между Луной и Солнцем. Земля всегда отбрасывает на Луну круглую тень, а это может быть лишь в том случае, если Земля имеет форму шара. Будь Земля плоским диском, ее тень имела бы форму вытянутого эллипса, если только затмение не происходит всегда именно в тот момент, когда Солнце находится точно на оси диска. Во-вторых, по опыту своих путешествий греки знали, что в южных районах Полярная звезда на небе располагается ниже, чем в северных. (Поскольку Полярная звезда находится над Северным полюсом, она будет прямо над головой наблюдателя, стоящего на Северном полюсе, а человеку на экваторе покажется, что она на линии горизонта). Зная разницу в кажущемся положении Полярной звезды в Египте и Греции, Аристотель сумел даже вычислить, что длина экватора равна 400 000 стадиев. Что такое стадий, точно неизвестно, но он близок к 200 метрам, и, стало быть, оценка Аристотеля примерно в 2 раза больше значения, принятого сейчас. У греков был еще и третий довод в пользу шарообразной формы Земли: если Земля не круглая, то почему же мы сначала видим паруса корабля, поднимающиеся над горизонтом, и только потом сам корабль?
   Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды обращаются вокруг нее по круговым орбитам. Он так полагал, ибо в соответствии со своими мистическими воззрениями Землю считал центром Вселенной, а круговое движение – самым совершенным. Птолемей во II веке развил идею Аристотеля в полную космологическую модель. Земля стоит в центре, окруженная восемью сферами, несущими на себе Луну, Солнце и пять известных тогда планет: Меркурий, Венеру, Марс, Юпитер и Сатурн (рис. 1.1). Сами планеты, считал Птолемей, движутся по меньшим кругам, скрепленным с соответствующими сферами. Это объясняло тот весьма сложный путь, который, как мы видим, совершают планеты. На самой последней сфере располагаются неподвижные звезды, которые, оставаясь в одном и том же положении друг относительно друга, движутся по небу все вместе как единое целое. Что лежит за последней сферой, не объяснялось, но во всяком случае это уже не было частью той Вселенной, которую наблюдает человечество.


   Модель Птолемея позволяла неплохо предсказывать положение небесных тел на небосводе, но для точного предсказания ему пришлось принять, что траектория Луны в одних местах подходит к Земле в 2 раза ближе, чем в других! Это означает, что в одном положении Луна должна казаться в 2 раза большей, чем в другом! Птолемей знал об этом недостатке, но тем не менее его теория была признана, хотя и не везде. Христианская Церковь приняла Птолемееву модель Вселенной как не противоречащую Библии, ибо эта модель была очень хороша тем, что оставляла за пределами сферы неподвижных звезд много места для ада и рая. Однако в 1514 г. польский священник Николай Коперник предложил еще более простую модель. (Вначале, опасаясь, наверное, того, что Церковь объявит его еретиком, Коперник пропагандировал свою модель анонимно). Его идея состояла в том, что Солнце стоит неподвижно в центре, а Земля и другие планеты обращаются вокруг него по круговым орбитам. Прошло почти столетие, прежде чем идею Коперника восприняли серьезно. Два астронома – немец Иоганн Кеплер и итальянец Галилео Галилей – публично выступили в поддержку теории Коперника, несмотря на то что предсказанные Коперником орбиты не совсем совпадали с наблюдаемыми. Теории Аристотеля– Птолемея пришел конец в 1609 г., когда Галилей начал наблюдать ночное небо с помощью только что изобретенного телескопа. Направив телескоп на планету Юпитер, Галилей обнаружил несколько маленьких спутников, или лун, которые обращаются вокруг Юпитера. Это означало, что не все небесные тела должны обязательно обращаться непосредственно вокруг Земли, как считали Аристотель и Птолемей. (Разумеется, можно было по-прежнему считать, что Земля покоится в центре Вселенной, а луны Юпитера движутся по очень сложному пути вокруг Земли, так что лишь кажется, будто они обращаются вокруг Юпитера. Однако теория Коперника была значительно проще.) В то же время Иоганн Кеплер модифицировал теорию Коперника, исходя из предположения, что планеты движутся не по окружностям, а по эллипсам (эллипс – это вытянутая окружность). Наконец-то теперь предсказания совпали с результатами наблюдений.
   Что касается Кеплера, то его эллиптические орбиты были искусственной (ad hoc) гипотезой, и притом «неизящной», так как эллипс гораздо менее совершенная фигура, чем круг. Почти случайно обнаружив, что эллиптические орбиты хорошо согласуются с наблюдениями, Кеплер так и не сумел примирить этот факт со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил. Объяснение пришло лишь гораздо позднее, в 1687 г., когда Исаак Ньютон опубликовал свою книгу «Математические начала натуральной философии». Ньютон в ней не только выдвинул теорию движения материальных тел во времени и пространстве, но и разработал сложные математические методы, необходимые для анализа движения небесных тел. Кроме того, Ньютон постулировал закон всемирного тяготения, согласно которому всякое тело во Вселенной притягивается к любому другому телу с тем большей силой, чем больше массы этих тел и чем меньше расстояние между ними. Это та самая сила, которая заставляет тела падать на землю. (Рассказ о том, что Ньютона вдохновило яблоко, упавшее ему на голову, почти наверняка недостоверен. Сам Ньютон сказал об этом лишь то, что мысль о тяготении пришла, когда он сидел в «созерцательном настроении», и «поводом было падение яблока»). Далее Ньютон показал, что, согласно его закону, Луна под действием гравитационных сил движется по эллиптической орбите вокруг Земли, а Земля и планеты вращаются по эллиптическим орбитам вокруг Солнца.
   Модель Коперника помогла избавиться от Птолемеевых небесных сфер, а заодно и от представления о том, что Вселенная имеет какую-то естественную границу. Поскольку «неподвижные звезды» не изменяют своего положения на небе, если не считать их кругового движения, связанного с вращением Земли вокруг своей оси, естественно было предположить, что неподвижные звезды – это объекты, подобные нашему Солнцу, только гораздо более удаленные.
   Ньютон понимал, что по его теории тяготения звезды должны притягиваться друг к другу и поэтому, казалось бы, не могут оставаться совсем неподвижными. Не должны ли они упасть друг на друга, сблизившись в какой-то точке? В 1691 г. в письме Ричарду Бентли, еще одному выдающемуся мыслителю того времени, Ньютон говорил, что так действительно должно было бы произойти, если бы у нас было лишь конечное число звезд в конечной области пространства. Но, рассуждал Ньютон, если число звезд бесконечно и они более или менее равномерно распределены по бесконечному пространству, то этого никогда не произойдет, так как нет центральной точки, куда им нужно было бы падать.
   Эти рассуждения – пример того, как легко попасть впросак, ведя разговоры о бесконечности. В бесконечной Вселенной любую точку можно считать центром, так как по обе стороны от нее число звезд бесконечно. Лишь гораздо позже поняли, что более правильный подход – взять конечную систему, в которой все звезды падают друг на друга, стремясь к центру, и посмотреть, какие будут изменения, если добавлять еще и еще звезд, распределенных приблизительно равномерно вне рассматриваемой области. По закону Ньютона дополнительные звезды в среднем никак не повлияют на первоначальные, т. е. звезды будут с той же скоростью падать в центр выделенной области. Сколько бы звезд мы ни добавили, они всегда будут стремиться к центру. В наше время известно, что бесконечная статическая модель Вселенной невозможна, если гравитационные силы всегда остаются силами взаимного притяжения.
   Интересно, каким было общее состояние научной мысли до начала XX в.: никому и в голову не пришло, что Вселенная может расширяться или сжиматься. Все считали, что Вселенная либо существовала всегда в неизменном состоянии, либо была сотворена в какой-то момент времени в прошлом примерно такой, какова она сейчас. Отчасти это, может быть, объясняется склонностью людей верить в вечные истины, а также особой притягательностью той мысли, что, пусть сами они состарятся и умрут, Вселенная останется вечной и неизменной.
   Даже тем ученым, которые поняли, что ньютоновская теория тяготения делает невозможной статическую Вселенную, не приходила в голову гипотеза расширяющейся Вселенной. Они попытались модифицировать теорию, сделав гравитационную силу отталкивающей на очень больших расстояниях. Это практически не меняло предсказываемого движения планет, но зато позволяло бесконечному распределению звезд оставаться в равновесии, так как притяжение близких звезд компенсировалось отталкиванием от далеких. Но сейчас мы считаем, что такое равновесие оказалось бы неустойчивым. В самом деле, если в какой-то области звезды чуть-чуть сблизятся, то силы притяжения между ними возрастут и станут больше сил отталкивания, так что звезды будут и дальше сближаться. Если же расстояние между звездами чуть-чуть увеличится, то перевесят силы отталкивания и расстояние будет нарастать.
   Еще одно возражение против модели бесконечной статической Вселенной обычно приписывается немецкому философу Генриху Олберсу, который в 1823 г. опубликовал работу, посвященную этой модели. На самом деле многие современники Ньютона занимались той же задачей, и статья Олберса была даже не первой среди работ, в которых высказывались серьезные возражения. Ее лишь первой стали широко цитировать. Возражение таково: в бесконечной статической Вселенной любой луч зрения должен упираться в какую-нибудь звезду. Но тогда небо даже ночью должно ярко светиться, как Солнце. Контраргумент Олберса состоял в том, что свет, идущий к нам от далеких звезд, должен ослабляться из-за поглощения в находящемся на его пути веществе.
Чтение онлайн



[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Навигация по сайту
Реклама


Читательские рекомендации

Информация